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Abstract: In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional derivative and a new
multiplication of fractional power series, we use some examples to illustrate how to use fractional power series
method to solve fractional differential equations. In fact, our results are generalizations of the results of ordinary
differential equations.
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I. INTRODUCTION

In a letter to L’ Hospital in 1695, Leibniz proposed the possibility of generalizing classical differentiation to fractional order

1
/ . . . . s
and asked what the result about % . After 124 years, Lacroix gave the right answer to this question for the first time that
X
Y
% = %xl/Z. For a long time, due to the lack of practical application, fractional calculus has not been widely used.
X

However, in the past few decades, fractional calculus has gained much attention as a result of its demonstrated applications
in various fields of science and engineering such as physics, biology, electrical engineering, mechanics, elasticity, control
theory, electronics, economics [1-12].

But the definition of fractional derivative is not unique, there are many useful definitions include Riemann-Liouville (R-L)
fractional derivative, Caputo fractional derivative, Grunwald-Letnikov fractional derivative, Jumarie’s modified R-L
fractional derivative [13-17]. Because Jumarie type of R-L fractional derivative helps to avoid non-zero fractional derivative
of constant function, it is easier to use this definition to connect fractional calculus with classical calculus.

Based on Jumarie’s modified R-L fractional derivative, this paper gives some examples to illustrate how to use fractional
power series method to solve fractional differential equations. A new multiplication of fractional power series plays an
important role in this paper. In fact, our results are generalizations of ordinary differential equation results.

I1. PRELIMINARIES
Firstly, we introduce the fractional derivative used in this paper and its properties.

Definition 2.1 ([18]): Let 0 < a < 1, and x, be a real number. The Jumarie type of Riemann-Liouville (R-L) a-fractional
derivative is defined by

(D) ()] = 2 [0 G0 gy ()

Fr(l-a)dx“Xo (x—t)%

where T( ) is the gamma function. On the other hand, for any positive integer p, we define (XOD,?)p[f(x)] =
(sDE) (x,D%) = (1, DF)[f ()], the p-th order a-fractional derivative of f(x).
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Proposition 2.2 ([19]): If a,B,x,, C are real numbers and § = « > 0, then

(e D)x = x)F] = 1320 (e = %), %)

and

(xDg)ICc] = 0. ®)
Definition 2.3 ([20]): Let x, x, and a; be real numbers for all k, and 0 < @ < 1. If the function f,: [a, b] - R can be
expressed as f, (x%) = Y= Om( — xo)k%, then we say that £, (x%) is a-fractional power series at x = x,.

In the following, we introduce a new multiplication of fractional power series.

Definition 2.4 ([21]): If 0 < @ < 1. Assume that f, (x*) and g, (x%) are two a-fractional power series at x = x,,

folx®) = Tz rrmes (6 = 20), @
Ja(x*) = Xi- om(x — xo)ka 5)
Then
fa(Xx)®q gu(x)
= Lo F(ka+1)( —x%0)" @ Z?:oﬁ(x — xo)k*
= Yk=o F(ka+1) (Zm 0 ( ) ak_mbm) (x - xo)ka. (6)
Equivalently,
fa(X)®q gu(x)

1 ®a k

= 0 B (s =) @ Do 2 (e (= x)®)

<) 1 k 1 ®ak
= Zic=o k! (an:o (m) a"‘mbm) (F(a+1) G xO)a) . (7
Definition 2.5 ([22]): Assume that 0 < o < 1, and x is a real number. The a-fractional exponential function is defined by
v xka v 1 1 ®k
Be®) = 2o tges = Zheoii (rr®) - (®)
1. EXAMPLES

In this section, we use fractional power series method to solve some fractional differential equations.

Example 3.1: If 0 < a < 1. Find the particular solution of the following initial value problem of a-fractional differential
equation:

(o0£) Iy (x)] - a +1)x " Vo (x*) =0, | "
Y2(0) =0, (DF)[ya(x91(0) =1

Solution Suppose that the particular solution is

1 Ruk
ya(x ) _Zk 0 Ak (F((Z+1) )

= a. + (; a)+ ( 1 a)®a2+...+ ( 1 a)®“k+... (10)
=0 T\t 2\t * U \Fe * ‘

Since y,(0) = 0, it follows that a, = 0. In addition,
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( oD;?)[ya(x“)] Y2 k- ay ( )®a (k-1)

I'(a+1)

=0t 2a, (F(a1+1)xa) + 343 (F(a1+1) xa)®a2 tet ke (F(a1+1)xa)®a Uy

Since ( oD%) [y, (x*)]1(0) = 1, we obtain a; = 1. Thus,

0 = ) o e )
YalX7) = \t@n™ %2 \Farn ™ U \r@rn®

a)@a k

— a o0
- [(a+1) X"+ Zk:z Qe (F(a+1) x

And

Rq 2
(Pl = 1+ 20, (F(a1+1)xa) +3a; (F(a1+1) xa) ot ka, (F(a1+1) x

1 a)@a (k-1)
r'(a+1) )

=1+ 22,k (

Furthermore,

2 1
( 0D,‘C‘) Ve (x®)] = 2a, + 3 2a;4 (mx“) ++k(k—1) a4 (r(a+1)x

1 a)®a (k-2)
(a+1) '

= Tkl — 1) ay (

Since ( OD,‘})Z[ya (x%)] - x*®, Vo (x%) = 0, it follows that

I'(a +1)
0 1 Ba (k=2) 1 a 1 @ 1 ,a Oake| _
Li=z k(k =1) - @i (r( P ) Tt ®a |G X T 2z % (r( mr )=
And hence,
Qg (k—-2) ®q (k+1)
© _ . 1 a a _ 1 1 a _
Tz k(k — 1) - ay (r(a+1)x ) (F(a+1) ) — Xk=2 k(r(a+1)x ) =0
That is,
_ 1 B 2\®a? . £\®a3
2a, + 3+ 2a, (F(a+1) )+ (4-3a,—-1) (F(a+1)x ) + (5-4as —a,) (F(a+1)x )
. _ 1 a\®et . Bak _
+(6-5a, —as) (F(a+1)x ) +o+[(k+2)(k+ 1) agyn — ag_q] (F(a+1)x ) +--=0.
Therefore,
a,=0,a;=0,a, = ﬁ, as =0,as =0,
Generally,
_ Ak—1
e+2 = Gyt D)
fork=1,2,---.
Hence,
47 =76~ 764398 T 5y 0. a 9-8 0, a1 109 10-9-7-6-4-3’
Generally,

azm-1 =0, a3, =0,
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a)®a(k_1) +

1 a)®u (k-2) +

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(1)
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and
= : 22
B3m+1 = G am 1097643 (22)
form=12,--.
Thus, the particular solution of the initial value problem of a-fractional differential equation is
®q 4 Qa7 ®q 10
x®) = e i 1 a a 1 1 a a 1 1 a a
) I'a +1) +4-3 (r(a+1)x ) +7-6-4—-3 (r(a+1)x ) + 10-9:7-6-4-3 (I‘(a+1)x ) Tt
Qg (3m+1)
1 1 2\«
(3m+1)-3m-10-9-7-6-4-3 (r(a+1)x )
! et ¥ 4a 1 7" 7a 1 L 1.
I'(a+1) 43 T(4a+1) 7643 T(7a+1) 10-9-7-6-4:3 T(10a+1)
1 i (Bm+1)! @Bm+a .
(3m+1):3m+10-9-7-6-4-3 F((3m+1)a+1)x T (23)
Example 3.2: Let 0 < a < 1. Find the general solution of the following a-fractional differential equation:
“®q (D) yax)] - ( £2) @ yex®) = =2 (2=x) ™" — 2. L _ye (24)
l"(a+1)x alo Ve X I (a +1)x aYalX Tarn ™~ M@
Solution Let the general solution be
®qk
1 a a
Yo (x®) = i @ (57 x%)
®q 2 ®q k
— 1 a 1 a) * 1 a)~*
=Gt a (r(a+1)x ) ta, (r(a+1)x ) Tt (F(a+1)x ) L (25)
Then
o 1 ®q (k—1)
(D) e )] = Tizo ke - @i (775 x%) : (26)
Since 2°®q (D) a(x] = (s % + 2) @ Y (x®) = =2 (— a)®“’2—z- L_xa it follows that
T(a+1) a\ o¥x ) T(a+1) aVa T(a+1) r(a+1)” '

(k=1)
F(a+1) “®a Zk 0 e (I‘(a1+1) x“)®u . - (F(zz+1)x + 2) ®“ Zk 0 QK (F(a1+1)x )®ak +2 (F(a1+1) x“)®a2 +

1
. xa
I'(a+1)

1 ®q k 1 ®a(k+1) © 1 « Rqk 1 @ ®Rq2
= Yk=ok - a (r( TR ) — k=0 @ k(F(a+1) ) — 2 Xk=o U (F(a+1)x ) +2(F(rx+1)x ) +

1
. xa
I'a+1)

® QR k ®Rq2
_ V' _ B ; a ak 1 x® a 1 a a . 1 a
= Xk=o(k —2) - a (F(a+1)x ) ~ Zk=1 Q- 1(F(a+1) ) +2(F(a+1)x ) +2 ra+) ™

=—-2ay + Xpeillk — 2) - ap — ax_4] (F(a;ﬂ)x“)&lk +2 (F(a1+1) x“)®a2 +2- F(a1+1) x®. 27)
Thus,
®q 2 ®a k
0=-2a9+(—a; —ap+2)- e +1)x +(—-a; +2)- (F(a+1) “) + Yresl(k —2) - ax — ag_4] (ﬁx“) .
(28)
Therefore,
a, =0,a; =2,and @, = 1 fork = 3,4, (29)
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Hence,

— _ 4 _ a2 ay az as a;
A3 =Gy, Gy =~ =25 05 = = ag=—=— (30)

Finally, we get the general solution is

Qg 2 Qg3 Qq 4 Qq 5
ay—o._1 a (1 a)~® . 1 a)"* 4 %2, 1 a)"* %2, 1 a)~®
Ya(x) =2 F(a+1)x ta, (F(a+1)x ) ta (F(a+1)x ) + 2! (I‘(a+1)x ) + 3! (I‘(a+1)x )

plz (2 xa)®a6+...
4! I'(a+1)

B2 Qg 2 ®q 3
—n._1 a . 1 a) @ 1 ay 1, ( 1 a) « i, ( 1 a) @
2 ra+n ™ ta (F(a+1)x B [1 + Farn ™~ + 2 \F@+n ¥ + 3t \F@+n * +

i 1
I'(a+1)

®a2
=2 x*+a,- (r(aH)x“) Qq Eq(x%), (31)

where a, is a constant.

IV. CONCLUSION

Based on Jumarie’s modified R-L fractional derivative, this paper provides some examples to illustrate how to use fractional
power series method to solve fractional differential equations. A new multiplication of fractional power series plays an
important role in this research. In fact, our results are generalizations of the results of ordinary differential equations. In the
future, we will continue to use the fractional power series method to solve problems in fractional differential equations.
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